NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD # RESIDUE AND TILLAGE MANAGEMENT MULCH TILL (Ac.) ### **CODE 345** ### **DEFINITION** Managing the amount, orientation and distribution of crop and other plant residue on the soil surface year round while limiting the soil-disturbing activities used to grow crops in systems where the entire field surface is tilled prior to planting. ### **PURPOSE** - Reduce sheet and rill erosion. - Reduce wind erosion. - Reduce soil particulate emissions - Maintain or improve soil condition. - Increase plant-available moisture. - Provide food and escape cover for wildlife. ### **CONDITIONS WHERE PRACTICE APPLIES** This practice applies to all cropland and other land where crops are planted. This practice includes tillage methods commonly referred to as mulch tillage or chiseling and disking. It applies to tillage for annually planted crops and to tillage for planting perennial crops. It also includes some planting operations, air seeders and "no-till" drills that disturb a large percentage of the soil surface during the planting operation. #### **CRITERIA** ### **General Criteria Applicable to All Purposes** All residues shall be uniformly distributed over the entire field. Combines or similar harvesting machines shall be equipped with spreaders capable of redistributing residues over at least 80 percent of the working width of the header. Residue shall not be burned. The annual Soil Tillage Intensity Rating (STIR) Value for all soil-disturbing activities shall be no greater than 60. ### Additional Criteria to Reduce Sheet and Rill Erosion The amount of randomly distributed surface residue needed and the amount of surface soil disturbance allowed to reduce erosion to the planned soil loss objective shall be determined using the Revised Universal Soil Loss Equation, Version 2 (RUSLE 2). Calculations shall account for the effects of all management practices (crop rotation, tillage, residue removal) in the management system. ### Additional Criteria to Maintain or Improve Soil Condition An evaluation of the cropping system using the soil conditioning index generated from RUSLE 2 shall result in a positive trend. ### Additional Criteria to Increase Plant-Available Moisture Reducing Evaporation from the Soil Surface: A minimum of 2000 pounds per acre or 60 percent surface residue cover shall be maintained throughout the year. ### Additional Criteria to Provide Food and Escape Cover for Wildlife The time that residue is present, the amount and orientation of residue and the height of stubble needed to provide adequate food and cover for the target species shall be determined using an approved habitat evaluation procedure. Harvest or tillage operations that disturb or cover the entire field shall not be performed during the nesting and brood-rearing period of the target species. ### **CONSIDERATIONS** **General** - Removal of crop residue, such as by baling or grazing, can have a negative impact on resources. These activities should not be performed without full evaluation of impacts on soil, water, animal, plant and air resources. Mulch till may be practiced continuously throughout the crop sequence. Production of adequate amounts of crop residue necessary for the proper functioning of this practice can be enhanced by selection of high residue producing crops and crop varieties in the rotation, use of cover crops and adjustment of plant populations and row spacing. A field border planted to permanent vegetation can: - allow unobstructed turning for equipment - eliminate unproductive end rows - provide food and escape cover for wildlife - provide travel lanes for farming operations. Increasing Soil Organic Matter Level and Reducing CO₂ Loss from the Soil – Where improving soil tilth is a concern, use of undercutting tools will enhance accumulation of organic material in the surface layer. ${\rm CO_2}$ loss is directly related to the volume of soil disturbed, the intensity of the disturbance and the soil moisture content and soil temperature at the time the disturbance occurs. The following guidelines can make this practice more effective: - Shallow soil disturbance (1-3 inches) releases less CO₂ than deeper operations. - When deep soil disturbance is performed, such as by sub-soiling or fertilizer injection, make sure the vertical tillage slot created by these implements is closed at the surface. - Planting with a single-disk opener no-till drill will release less CO₂ than planting with a wide-point hoe/chisel opener air seeder drill. Soil disturbance that occurs when soil temperatures are below 50° F will release less CO₂ than operations done when the soil is warmer. Increasing Plant-available Moisture – Tillage and planting operations done on the contour will help slow overland flow and increase infiltration, thus increasing the potential for increased water storage in the root zone. **Providing Food and Escape Cover for Wildlife -** Avoid disturbing standing stubble or heavy residue during the nesting season for ground-nesting species. Forgoing fall shredding or tillage operations will maximize the amount of wildlife food and cover during critical winter months. Leaving rows of unharvested crop standing at intervals across the field or adjacent to permanent cover will enhance the value of residues for wildlife food and cover. Leaving unharvested crop rows for two growing seasons will further enhance the value of these areas for wildlife. #### PLANS AND SPECIFICATIONS Specifications for establishment and operation of this practice shall be prepared for each field or treatment unit according to the Criteria, Considerations and O&M described in this standard. Specifications shall be recorded using approved specification sheets, job sheets, narrative statements in the conservation plan, or other acceptable documentation. ### **OPERATION AND MAINTENANCE** No operation and maintenance requirements, statewide in scope, have been identified for this practice. ### **REFERENCES** Bolton, Ryan. 2003. Impact of the surface residue layer on decomposition, soil water properties and nitrogen dynamics. M.S. thesis. Univ. of Saskatchewan, Saskatoon, Saskatchewan, CA. Reicosky, D.C., M.J. Lindstrom, T.E. Schumacher, D.E. Lobb and D.D. Malo. 2005. Tillage-induced CO₂ loss across an eroded landscape. Soil Tillage Res. 81:183-194. Reicosky, D.C. 2004. Tillage-induced soil properties and chamber mixing effects on gas exchange. Proc. 16th Triennial Conf., Int. Soil Till. Org. (ISTRO). Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool and D.C. Yoder, coordinators. 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture, Agriculture Handbook No. 703. Shaffer, M.J., and W.E. Larson (ed.). 1987. Tillage and surface-residue sensitive potential evaporation submodel. *In* NTRM, a soil-crop simulation model for nitrogen, tillage and crop residue management. USDA Conserv. Res. Rep. 34-1. USDA-ARS. Skidmore, E.L. and N.P. Woodruff. 1968. Wind erosion forces in the United States and their use in predicting soil loss. U.S. Department of Agriculture. Agriculture Handbook No. 346. U.S.D.A. Natural Resources Conservation Service. 2002. National Agronomy Manual. 190-V. 3rd ed.